\qquad Date \qquad

Lab Activity- Kool-Aid Concentration

Introduction: This activity introduces you to solutions and allows you to experience making different concentrations of Kool- aid solution. In chemistry, concentration is usually measured by the number of moles of substance dissolved in a liter of liquid. This is called molarity and is expressed as mol/L or \mathbf{M} (The formula is: $\mathbf{M}=$ moles/Liter).

Purpose:

- Practice molarity calculations in order to make 3 different solutions of Kool-Aid with the following concentrations: $0.1 \mathrm{M}, \mathbf{0 . 4} \mathbf{~ M}$, \& $\mathbf{0 . 7 M}$.
- Determine the concentration (molarity) of properly made Kool-Aid through a taste test.

Materials:

- Kool-Aid Powder, Popsicle sticks (to stir solutions), Water, Balance, 3 Plastic cups

Pre-Lab Calculations: For full credit you must list your givens, show the formula, all your work, and

 box/highlight your answer with correct units \& significant figures!1. If 0.35 moles of NaCl was dissolved in enough water to make 200 ml of solution, what is the molarity? (NOTE: $1000 \mathrm{~mL}=1 \mathrm{~L}$)
2. You are asked to make 500 mL of a 0.250 M sodium chloride (NaCl) solution.
a. How many moles of NaCl would you need?
b. How many grams of NaCl would you need?
3. You need to prepare 100 mL of a 0.050 M solution of calcium chloride $\left(\mathrm{CaCl}_{2}\right)$.
a. How many moles of CaCl_{2} are needed?
b. How many grams of CaCl_{2} are needed?
\qquad Date \qquad
4. Kool-Aid Calculations: The molar mass of Kool-aid powder (sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$) = 342 grams.

	$\begin{gathered} \text { Cup \#1 } \\ 100 \mathrm{~mL} \text { of a } 0.1 \mathrm{M} \text { solution } \end{gathered}$	$100 \mathrm{~mL} \text { of a } 0.4 \mathrm{M} \text { solution }$	$100 \mathrm{~mL} \text { of a } 0.7 \mathrm{M} \text { solution }$
Calculate \# of moles of Kool-aid powder needed			
Calculate \# of grams of Kool-aid powder needed			

Procedure: (for every lab group of 3-4 people):

1. Place the Powder Measuring Cup on the scale and push "Zero."
2. "Using your calculations from Pre-Lab Question \#4 above, measure out the correct amount of GRAMS of Kool-Aid powder into the assigned cup to make a 0.1 M solution.
3. Transfer the powder into a "mixing cup."
4. Label this mixing cup: Cup \#1.
5. Place cup back onto scale.
6. Since 1 gram $\mathrm{H}_{2} \mathrm{O}=1 \mathrm{~mL}$, add water into the Cup \#1 until you have 100 mL of solution.
7. Stir with a spoon or stick.
8. Repeat steps $1-6$ in order to make the 0.4 M (Cup \#2) and 0.7 M (Cup \#3) solutions.
9. Observe and taste the solutions you have made. You can have one "designated taster" or you can pour a little into separate little cups for each group member to taste.
10. Record in data table.
11. Clean-Up...Throw away cups that you drank out of, but save the mixing \& measuring cups.

Data Table:

	Cup \#1 - 0.1 M solution	Cup \#2 - 0.4 M solution	Cup \#3 - 0.7 M solution
Observations of look, color, smell, and taste			

\qquad Date \qquad

Analysis Conclusion Questions:

1. Which concentration that you tested was closest to the ideal concentration of Kool-Aid? What was wrong with each of the other solutions that you made?
2. What was the solute used in this lab? What was the solvent?
3. What is molarity?

Conclusion Calculations Questions: For full credit you must list your givens, show the formula, all your work, and box/highlight your answer with correct units \& significant figures!

1. Determine the following concentrations (molarity). Reminder: 1 gram $\mathrm{H}_{2} \mathrm{O}=1 \mathrm{~mL}$ \& $1 \mathrm{~L}=1000 \mathrm{~mL}$ a. If 1.80 moles of NaCl was dissolved in enough water to make 3.60 L of solution:
b. If 20 grams of NaOH was dissolved in enough water to make a 250 mL NaOH solution:
