Variables and Expressions

Warm Up

Lesson Presentation

Lesson Quiz

Variables and Expressions

Warm Up

Add or subtract.

1. $6+104110$
2. $23-815$
3. 12(9) 108
4. $\frac{1}{2}+\frac{1}{5} \quad \frac{7}{10}$

Multiply or divide.
5. $324 \div 1818$
7. 13.5(10) 135
6. $\frac{1}{4}(24) 6$
8. $18.2 \div 29.1$

Variables and Expressions

Objectives

Translate between words and algebra. Evaluate algebraic expressions.

Variables and Expressions

Vocabulary

variable constant numerical expression algebraic expression evaluate

Variables and Expressions

A variable is a letter or a symbol used to represent a value that can change.

A constant is a value that does not change.

A numerical expression contains only constants and operations.

An algebraic expression may contain variables, constants, and operations.

Variables and Expressions

You will need to translate between algebraic expressions and words to be successful in math.

$+$
 Plus, sum, increased by
 Minus, difference, less than

 Times, product, Divided by, quotient equal groups of

Variables and Expressions

Writing Math

These expressions all mean " 2 times y ":

$2 y$
2•y
$2 x y$

2(y)
(2) (y)
(2) y

Variables and Expressions

Example 1: Translating from Algebra to Words

Give two ways to write each algebraic expression in words.
A. $9+r$ the sum of 9 and r 9 increased by r
C. 7 m
the product of m and 7 m times 7
B. q - 3
the difference of q and 3
3 less than q
D. $\boldsymbol{j} \div \mathbf{6}$ the quotient of j and 6 j divided by 6

Variables and Expressions

Check It Out! Example 1

Give two ways to write each algebraic expression in words.

1a. 4-n
4 decreased by n
n less than 4

1b. $\frac{t}{5}$
the quotient of t and 5 t divided by 5

1c. $9+q$
the sum of 9 and q q added to 9

1d. 3(h)
the product of 3 and h
3 times h

Variables and Expressions

To translate words into algebraic expressions, look for words that indicate the action that is taking place.

Add

Put together, combine

Multiply

Put together equal groups

Subtract

Find how much more or less

Divide
Separate into equal groups

Variables and Expressions

Example 2A: Translating from Words to Algebra

John types 62 words per minute. Write an expression for the number of words he types in m minutes.

m represents the number of minutes that John types.
$62 \cdot m$ or $62 m$ Think: m groups of 62 words

Variables and Expressions

Example 2B: Translating from Words to Algebra

Roberto is 4 years older than Emily, who is \boldsymbol{y}
years old. Write an expression for Roberto's age y represents Emily's age.
$y+4$ Think: "older than" means "greater than."

Variables and Expressions

Example 2C: Translating from Words to Algebra

> Joey earns \$5 for each car he washes. Write an expression for the number of cars Joey must wash to earn d dollars.

d represents the total amount that Joey will earn.
$\frac{d}{5}$
Think: How many groups of $\$ 5$ are in d?

Variables and Expressions

Check It Out! Example 2a

Lou drives at $65 \mathrm{mi} / \mathrm{h}$. Write an expression for the number of miles that Lou drives in \boldsymbol{t} hours.

t represents the number of hours that Lou drives.
$65 t$ Think: number of hours times rate per hour.

Variables and Expressions

Check It Out! Example 2b

Miriam is $\mathbf{5 c m}$ taller than her sister, than her sister who is m centimeters tall. Write an expression for Miriam's height in centimeters.
m represents Miriam's sister's height in centimeters.
$m+5$ Think: Miriam's height is 5 added to her sister's height.

Variables and Expressions

Check It Out! Example 2c

Elaine earns $\mathbf{\$ 3 2}$ per day. Write an expression for the amount she earns in d days.

d represents the amount of money Elaine will earn each day.

32d Think: The number of days times the amount Elaine would earn each day.

Variables and Expressions

To evaluate an expression is to find its value.
To evaluate an algebraic expression, substitute numbers for the variables in the expression and then simplify the expression.

Variables and Expressions

Example 3: Evaluating Algebraic Expressions

Evaluate each expression for $a=4, b=7$, and
$c=2$.
A. b-c

$$
\begin{aligned}
b-c & =7-2 & & \text { Substitute } 7 \text { for } b \text { and } 2 \text { for } c . \\
& =5 & & \text { Simplify. }
\end{aligned}
$$

B. ac

$$
\begin{aligned}
a c & =4 \cdot 2 & & \text { Substitut } \\
& =8 & & \text { Simplify. }
\end{aligned}
$$

Variables and Expressions

Check It Out! Example 3

Evaluate each expression for $m=3, n=2$, and
$p=9$.
a. $m n$

$$
\begin{aligned}
m n & =3 \cdot 2 \\
& =6
\end{aligned}
$$

b. $\boldsymbol{p}-\boldsymbol{n}$

$$
\begin{aligned}
p-n & =9-2 & & \text { Substitute } 9 \text { for } p \text { and } 2 \text { for } n . \\
& =7 & & \text { Simplify. }
\end{aligned}
$$

c. $\boldsymbol{p} \div \boldsymbol{m}$

$$
\begin{aligned}
p \div m & =9 \div 3 & & \text { Substitute } 9 \text { for } p \text { and } 3 \text { for } m . \\
& =3 & & \text { Simplify. }
\end{aligned}
$$

Variables and Expressions

Example 4A: Recycling Application

Approximately eighty-five 20-ounce plastic bottles must be recycled to produce the fiberfill for a sleeping bag.
Write an expression for the number of bottles needed to make s sleeping bags.

The expression $85 s$ models the number of bottles to make s sleeping bags.

Variables and Expressions

Example 4B: Recycling Application Continued

Approximately eighty-five 20-ounce plastic bottles must be recycled to produce the fiberfill for a sleeping bag.
Find the number of bottles needed to make 20, 50, and 325 sleeping bags.
Evaluate $85 s$ for $s=20,50$, and 325 .

s	$85 s$
20	$85(20)=1700$
50	$85(50)=4250$
325	$85(325)=27,625$

To make 20 sleeping bags, 1700 bottles are needed.

To make 50 sleeping bags, 4250 bottles are needed.
To make 325 sleeping bags, 27,625 bottles are needed.

Variables and Expressions

Writing Math

A replacement set is a set of numbers that can be substituted for a variable. The replacement set in Example 4 is (20,50, and 325).

Variables and Expressions

Check It Out! Example 4a

> To make one sweater, 63 twenty ounce plastic drink bottles must be recycled. Write an expression for the number of bottles needed to make s sweaters.

The expression $63 s$ models the number of bottles to make s sweaters.

Variables and Expressions

Check It Out! Example 4b Continued

To make one sweater, 63 twenty ounce plastic drink bottles must be recycled. Find the number of bottles needed to make 12, 25 and 50 sweaters.
Evaluate $63 s$ for $s=12,25$, and 50.

s	$63 s$
12	$63(12)=756$
25	$63(25)=1575$
50	$63(50)=3150$

To make 12 sweaters, 756 bottles are needed.
To make 25 sweaters, 1575 bottles are needed.
To make 50 sweaters, 3150 bottles are needed.

Variables and Expressions

Lesson Quiz: Part I

Give two ways to write each algebraic expression in words.

1. $j-3$ The difference of j and $3 ; 3$ less than j.
2. $4 p 4$ times p; The product of 4 and p.
3. Mark is 5 years older than Juan, who is y years old. Write an expression for Mark's age. $y+5$

Variables and Expressions

Lesson Quiz: Part II

Evaluate each expression for $c=6, d=5$, and $e=10$.
4. $\frac{d}{e} \frac{1}{2}$

$$
\text { 5. } c+d 11
$$

Shemika practices basketball for $\mathbf{2}$ hours each day.
6. Write an expression for the number of hours she practices in d days. $2 d$
7. Find the number of hours she practices in 5,12 , and 20 days. 10 hours; 24 hours; 40 hours

