PLEASE DO NOT WRITE ON THIS TEST PAPER

Arabia Mountain High School	Mole Concept and Stoichiometry	
Chemistry	Use a #2 pencil to bubble the correct answer on the	
	scantron.	
Version A1	ANSWER KEY	ANSWER KEY
Make sure you write the test version on the scantron		

1. How many moles is 400.0 g of Al 2(SO₄)₃?

Mol = mass/molar mass

Mol = 400.0g/342g/mol = 1.169 mol

2. Which is the percent composition of bromine in the compound NaBr?

% Br = (mass Br/mass NaBr) x 100

% Br = (79.90g/102.88g) x 100 = 77.7%

3. How many molecules are in 3.6 grams of NaCl?

Molecules NaCl = $3.6g \frac{\text{NaCl}}{\text{NaCl}} \times \frac{6.02 \times 10^{23} \text{ NaCl molecules}}{58.43g \frac{\text{NaCl}}{\text{NaCl}}} = \frac{3.7 \times 10^{22} \text{ molecules}}{1.7 \times 10^{22} \text{ molecules}}$

4. How many grams are in 1.946 moles of NaCl?

From Mol = mass/molar mass,

Mass = mol x molar mass

Mass NaCl = 1.946 mol x 58.43 g = 113.7 g

5. For the reaction: P_4 (s) + $5O_2$ (g) $\rightarrow P_4O_{10}$ (s), if 3 mol of phosphorus react with 10 mol of oxygen, the theoretical yield of phosphorus (V) oxide will be ______.

From P₄,

Mol $P_4O_{10} = 3 \text{ mol } P_4 \times \frac{1 \text{ mol } P_4O_{10}}{1 \text{ mol } P_4} = \frac{3 \text{ mol } P_4O_{10}}{1 \text{ mol } P_4}$

From O₂

Mol $P_4O_{10} = 10 \text{ mol } O_2 \times 1 \text{ mol } P_4O_{10} = 2 \text{ mol } P_4O_{10}$

5 mol O₂

Therefore, O_2 is limiting reactant and the theoretical yield = 2 mol P_4O_{10}

6. How many moles of sulfur will combine with 0.4 moles of carbon to form CS₂?

$$C + 2S \rightarrow CS_2$$

1 mol 2 mol

Mol S = 0.4 mol C x <u>2 mol S</u> = <mark>0.8 mol S</mark>

1 mol C

7. According to this chemical reaction, which is the number of grams of Fe produced from 14 moles of H₂?

$$Fe_3O_4(s) + 4H_2(g) \rightarrow 3Fe(s) + 4H_2O(l)$$

4 mol 3(55.845)g

gram Fe = 14 mol H₂ x <u>167.535 g Fe</u> = <mark>586g = 5.9 x 10² g Fe</mark>

4 mol H₂

PLEASE DO NOT WRITE ON THIS TEST PAPER

8. Which is the correct mole ratio of K₃PO₄ to KNO₃ in the following chemical reaction?

$$3Mg(NO_3)_2 + 2K_3PO_4 \rightarrow Mg_3(PO_4)_2 + 6KNO_3$$

3

2

1

6

Mol ratio of K₃PO₄ to KNO₃

2: 6 which is 1:3

9. Which is the correct mole ratio for aluminum chloride to chlorine in the following chemical reaction?

$$2AICI_3 + 3Br_2 \rightarrow 2AIBr_3 + 3CI_2$$

2

3

2 3

Mole ratio AlCl₃ to Cl₂

2:3

10. How many moles of KBr will be produced from 7.0 moles of BaBr₂?

$$BaBr_2 + K_2SO_4 \rightarrow 2KBr + BaSO_4$$

1 mol

2 mol

$$Mol KBr = 7.0 \frac{mol BaBr_2}{mol KBr} \times \frac{2 mol KBr}{mol KBr} = \frac{14 mol}{mol KBr}$$

1 mol BaBr₂

11. How many moles of Al would be produced from 20 moles of Al₂O₃?

$$2AI_2O_3 \rightarrow 4AI + 3O_2$$

2 mol 4 mol

Mol Al =
$$20 \frac{\text{mol Al}_2 \Omega_3}{\text{mol Al}} \times 4 \frac{\text{mol Al}}{\text{mol Al}} = 40 \frac{\text{mol Al}}{\text{mol Al}}$$

2 mol Al₂O₃

12. How many moles of Cu are needed to react with 5.8 moles of AgNO₃?

Cu +
$$2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag$$

1 mol 2 mol

2 mol AgNO₃

13. Which is the number of moles of carbon dioxide produced from the complete combustion of 5.42 moles of ethanol?

$$C_2H_6O + 3O_2 \rightarrow 2CO_2 + 3H_2O$$

1 mol

2 mol

Mol
$$CO_2 = 5.42 \frac{\text{mol } C_2H_6O}{\text{mol } CO_2} \times \frac{2 \text{ mol } CO_2}{\text{mol } CO_2} = \frac{10.8 \text{ mol } CO_2}{\text{mol } CO_2}$$

1 mol C₂H₆O

14. Which is the correct number of moles of NO that is produced from 13.2 moles of oxygen gas in the presence of excess ammonia?

$$4NH_3$$
 (g) + $5O_2$ (g) $\rightarrow 4NO$ (g) + $6H_2O$ (l)

5 mol

4 mol

Mol NO = $13.2 \frac{\text{mol O}_2}{\text{mol NO}} \times 4 \frac{\text{mol NO}}{\text{10.6 mol NO}}$

5 mol O₂

PLEASE DO NOT WRITE ON THIS TEST PAPER

15. How many grams of water are produced when 2.50 mol oxygen reacts with hydrogen?

$$2H_2 + O_2 \rightarrow 2H_2O$$
1mol 36 g

gram
$$H_2O = 2.50 \frac{\text{mol } O_2}{\text{mol } O_2} \times \frac{36 \text{ g } H_2O}{1 \frac{\text{mol } O_2}{\text{mol } O_2}} = \frac{90.0 \text{ g } H_2O}{1 \frac{\text{mol } O_2}{\text{mol } O_2}}$$

Use the information below to answer questions 16 and 17.

Hydrazine, N₂H₄, reacts with dinitrogen tetroxide, N₂O₄, to produce nitrogen gas, N₂ (g), and water vapor, H₂O (g). This reaction has been used to lunch rockets into space. The unbalanced equation is shown below:

$$2N_2H_4(I) + 1N_2O_4(I) \rightarrow 3N_2(g) + 4H_2O(g)$$

16. When the equation is balanced, the coefficients are ___, ___, ___.

a. 1,1,2,2c. 2,1,3,4

b. 2,2,3,4

d. 2,1,4,4

17. How many moles of water vapor can be produces from 14.0 moles of N₂H₄?

Mol H₂O = 14
$$\frac{\text{mol N}_2\text{H}_4}{\text{mol N}_2\text{H}_4} \times \frac{4 \text{ mol H}_2\text{O}}{2 \frac{\text{mol N}_2\text{H}_4}{\text{mol N}_2\text{H}_4}} = \frac{112 \text{ mol H}_2\text{O}}{12 \text{ mol N}_2\text{O}}$$

Use the information below to answer questions 18 and 19.

Ammonium nitrate, NH₄NO₃, is an important fertilizer and is also used in the manufacture of explosives and fireworks. It is produced by treating nitric acid, HNO₃, with ammonia gas, NH₃.

$$HNO_3 + NH_3 \rightarrow NH_4NO_3$$

1 mol 1 mol 1 mol

- **18.** If **14** moles of ammonia gas are used with **16** moles of nitric acid for the reaction, which is the limiting reactant? Since mol ratio is 1:1:1,
 - a. 14 mol NH₃ will produce 14 mol NH₄NO₃
 - b. 16 mol HNO₃ will produce 16 mol NH₄NO₃

Therefore, NH₃ is the limiting reactant since it produces smaller amount of product.

19. How many moles of ammonium nitrate would you make from the ingredients in the problem above?

From #18 above, 14 mol NH₄NO₃ would be produced

20. The equation for the reaction between FeCl 3 and NH4OH is:

FeCl₃ +
$$3NH_4OH \rightarrow Fe(OH)_3 + 3NH_4Cl$$

3 mol 160.5 g

According to this equation, how many grams of NH₄Cl would be produced when two moles of NH₄OH reacts completely?

21. Examine the following balanced reaction:

$$2AlCl3 + 3MgSO4 \rightarrow Al2(SO4)3 + 3MgCl2$$

$$2 mol 3 mol 1 mol$$

If you have 8 moles of AICl₃ and 9 moles of MgSO₄, which is your limiting reactant?

From AICI_{3.}

From MgSO₄,

Mol Al₂(SO₄)₃ = 9 mol MgSO₄ x 1 mol Al₂(SO₄)₃ = 3 mol Al₂(SO₄)₃

3 mol MgSO₄

Therefore, MgSO₄ is limiting reactant since it produced smaller amount of product.

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

1 mol 1 mol 1 mol

22. In the chemical equation above, 3 mol of CaCO₃ will decompose into _____.

Since mol ratio is 1:1:1 mol of CaCO₃ will produce 3 mol CaO and 3 mol CO₂

23. Determine how many moles of CaSi2 that would react exactly with 12 moles of SbCl3:

$$3CaSi_2 + 2SbCl_3 \rightarrow 6Si + 2Sb + 3CaCl_2$$

3 mol 2 mol

Mol CaSi₂ = 12
$$\frac{\text{mol SbCl}_3}{\text{2-mol SbCl}_4}$$
 x $\frac{3 \text{ mol CaSi}_2}{\text{2-mol SbCl}_4}$

24. If you are given 4 moles of O2 and 3 moles of N2, which substance will be the limiting reactant?

$$N_2(g) + 2O_2(g) \rightarrow 2NO_2(g)$$

1 mol 2 mol 2 mol

From O₂,

$$Mol NO2 = 4 \frac{mol O2}{mol NO2} \times 2 \frac{2 mol NO2}{2 \frac{mol O2}{mol O2}$$

From N₂,

Mol NO₂ = 3
$$\frac{\text{mol N}_2}{\text{1mol N}_2}$$
 x $\frac{2 \text{ mol NO}_2}{\text{1mol N}_2}$

O₂ is the limiting reactant since it produced smaller amount of NO₂

25. The empirical formula for a compound is CH₂O, and the molar mass is 180.2 g/mol. Which is the molecular formula for this compound?

$$(CH_2O)x = 180.2 \text{ g/mol}$$

 $30x = 180.2$
 $X = 180.2 = 6$
 30

Therefore, molecular formula = $(CH_2O)6 = C_6H_{12}O_6$