Arabia Mountain High School	Mole Concept and Stoichiometry
Chemistry	Use a \#2 pencil to bubble the correct answer on the scantron.
$\frac{\text { Version A1 }}{\text { Make sure you write the test version on the scantron }}$	ANSWER KEY ANSWER KEY

1. How many moles is 400.0 g of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$?
$\mathrm{Mol}=$ mass $/$ molar mass
$\mathrm{Mol}=400.0 \mathrm{~g} / 342 \mathrm{~g} / \mathrm{mol}=1.169 \mathrm{~mol}$
2. Which is the percent composition of bromine in the compound NaBr ?
$\% \mathrm{Br}=($ mass $\mathrm{Br} /$ mass NaBr$) \times 100$
$\% \mathrm{Br}=(79.90 \mathrm{~g} / 102.88 \mathrm{~g}) \times 100=77.7 \%$
3. How many molecules are in 3.6 grams of NaCl ?

Molecules $\mathrm{NaCl}=3.6 \mathrm{~g} \mathrm{NaCl} \times \frac{6.02 \times 10^{23} \mathrm{NaCl} \text { molecules }}{58.43 \mathrm{~s}}=3.7 \times 10^{22}$ molecules 58.43 g NaCl
4. How many grams are in 1.946 moles of NaCl ?

From $\mathrm{Mol}=$ mass/molar mass,
Mass = mol x molar mass
Mass $\mathrm{NaCl}=1.946 \mathrm{~mol} \times 58.43 \mathrm{~g}=113.7 \mathrm{~g}$
5. For the reaction: $\mathrm{P}_{4}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{~g}) \rightarrow \mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})$, if 3 mol of phosphorus react with 10 mol of oxygen, the theoretical yield of phosphorus (V) oxide will be \qquad -.
From P_{4},
$\mathrm{Mol} \mathrm{P}_{4} \mathrm{O}_{10}=3 \mathrm{~mol} \mathrm{P} \mathrm{P}_{4} \times 1 \mathrm{~mol} \mathrm{P}_{4} \underline{\mathrm{O}}_{10}=3 \mathrm{~mol} \mathrm{P}_{4} \mathrm{O}_{10}$

$$
1 \mathrm{~mol} \mathrm{P}_{4}
$$

From O_{2},
$\mathrm{Mol} \mathrm{P}_{4} \mathrm{O}_{10}=10 \mathrm{~mol} \mathrm{O}_{2} \times 1 \mathrm{~mol} \mathrm{P}_{4} \mathrm{O}_{10}=2 \mathrm{~mol} \mathrm{P} \mathrm{O}_{10}$
$5 \mathrm{~mol} \mathrm{O}_{2}$
Therefore, O_{2} is limiting reactant and the theoretical yield $=\mathbf{2} \mathbf{~ m o l ~} \mathrm{P}_{4} \mathrm{O}_{10}$
6. How many moles of sulfur will combine with 0.4 moles of carbon to form CS_{2} ?

$$
\underset{1 \mathrm{~mol}}{\mathrm{C}}+\underset{2 \mathrm{~mol}}{\mathrm{CS} \rightarrow \mathrm{CS}_{2}}
$$

$\mathrm{Mol} \mathrm{S}=0.4 \mathrm{~mol} \times \underline{2 \mathrm{~mol} \mathrm{~S}}=0.8 \mathrm{~mol} \mathrm{~S}$
1 mole
7. According to this chemical reaction, which is the number of grams of Fe produced from 14 moles of H_{2} ?

$$
\begin{aligned}
& \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O} \text { (I) } \\
& 4 \mathrm{~mol} \quad 3(55.845) \mathrm{g}
\end{aligned}
$$

gram $\mathrm{Fe}=14 \mathrm{~mol}_{\mathrm{Z}} \times 167.535 \mathrm{~g} \mathrm{Fe}=586 \mathrm{~g}=5.9 \times 10^{2} \mathrm{~g} \mathrm{Fe}$ $4 \mathrm{molHz}_{z}$
8. Which is the correct mole ratio of $\mathrm{K}_{3} \mathrm{PO}_{4}$ to KNO_{3} in the following chemical reaction?

$$
\underset{3}{3 \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\underset{2}{2 \mathrm{~K}_{3} \mathrm{PO}_{4}} \rightarrow \underset{2}{\rightarrow} \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{KNO}_{3}}
$$

Mol ratio of $\mathrm{K}_{3} \mathrm{PO}_{4}$ to KNO_{3}
2: 6 which is $1: 3$
9. Which is the correct mole ratio for aluminum chloride to chlorine in the following chemical reaction?

$$
\begin{array}{lll}
2 \mathrm{AlCl}_{3}+3 \mathrm{Br}_{2} \rightarrow & 2 \mathrm{AlBr}_{3}+3 \mathrm{Cl}_{2} \\
2 & 3 & 2
\end{array}
$$

Mole ratio AlCl_{3} to Cl_{2}
2:3
10. How many moles of KBr will be produced from 7.0 moles of BaBr_{2} ?
$\underset{\substack{\mathrm{BaBr}_{2} \\ 1 \mathrm{~mol}}}{\mathrm{~K}_{2} \mathrm{SO}_{4}} \rightarrow \underset{2 \mathrm{~mol}}{2 \mathrm{KBr}}+\mathrm{BaSO}_{4}$

> Mol KBr $=7.0 \mathrm{~mol} \mathrm{BaBr}_{z} \times \underline{2 \mathrm{~mol} \mathrm{KBr}}=14 \mathrm{~mol}$
> $1 \mathrm{~mol} \mathrm{BaBr}_{z}$
11. How many moles of Al would be produced from 20 moles of $\mathrm{Al}_{2} \mathrm{O}_{3}$?
$2 \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow 4 \mathrm{Al}+3 \mathrm{O}_{2}$
$2 \mathrm{~mol} \quad 4 \mathrm{~mol}$
$\mathrm{Mol} \mathrm{Al}=20 \mathrm{~mol} \mathrm{Al}_{2} \theta_{3} \times \underline{4 \mathrm{~mol} \mathrm{Al}}=40 \mathrm{~mol} \mathrm{Al}$
$2 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}$
12. How many moles of Cu are needed to react with 5.8 moles of AgNO_{3} ?
$\mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}$
1 mol 2 mol
$\mathrm{Mol} \mathrm{Cu}=5.8 \mathrm{~mol} \mathrm{AgNO}_{3} \times 1 \mathrm{~mol} \mathrm{Cu}=2.9 \mathrm{~mol} \mathrm{Cu}$
$2 \mathrm{~mol}_{\mathrm{AgNO}}^{3}$
13. Which is the number of moles of carbon dioxide produced from the complete combustion of 5.42 moles of ethanol?

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+3 \mathrm{O}_{2} \rightarrow \underset{2 \mathrm{Col}}{2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}} \\
& 1 \mathrm{~mol}
\end{aligned}
$$

$\mathrm{Mol} \mathrm{CO}_{2}=5.42 \mathrm{~mol}_{2} \mathrm{H}_{6} \Theta \times \underline{2} \mathrm{~mol} \mathrm{CO}_{2}=10.8 \mathrm{~mol} \mathrm{CO}_{2}$
$1 \mathrm{~mol}_{2} \mathrm{H}_{6} \mathrm{O}$
14. Which is the correct number of moles of NO that is produced from 13.2 moles of oxygen gas in the presence of excess ammonia?

$$
\begin{gathered}
4 \mathrm{NH}_{3}(\mathrm{~g})+\underset{2}{5 \mathrm{O}_{2}(\mathrm{~g})} \rightarrow \underset{5 \mathrm{~mol}}{4 \mathrm{NO}(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
4 \mathrm{~mol}
\end{gathered}
$$

$\mathrm{Mol} \mathrm{NO}=13.2 \mathrm{~mol}_{z} \times 4 \mathrm{~mol} \mathrm{NO} 10.6 \mathrm{~mol} \mathrm{NO}$
$5 \mathrm{~mol} \mathrm{O}_{\mathrm{z}}$
15. How many grams of water are produced when 2.50 mol oxygen reacts with hydrogen?

$$
\begin{array}{r}
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \\
1 \mathrm{~mol} 36 \mathrm{~g}
\end{array}
$$

```
gram H2O = 2.50 mol- - < < 36 g H2
    1 molOz
```


Use the information below to answer questions 16 and 17.

Hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}$, reacts with dinitrogen tetroxide, $\mathrm{N}_{2} \mathrm{O}_{4}$, to produce nitrogen gas, $\mathrm{N}_{2}(\mathrm{~g})$, and water vapor, $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$. This reaction has been used to lunch rockets into space. The unbalanced equation is shown below:
$\ldots 2 \mathrm{~N}_{2} \mathrm{H}_{4}(\mathrm{I})+\ldots 1 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{I}) \rightarrow \ldots \mathrm{IN}_{2}(\mathrm{~g})+\ldots 4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
16. When the equation is balanced, the coefficients are \qquad .
a. $1,1,2,2$
b. $2,2,3,4$
c. $2,1,3,4$
d. $2,1,4,4$
17. How many moles of water vapor can be produces from 14.0 moles of $\mathbf{N}_{2} \mathbf{H}_{4}$?
$\mathrm{Mol} \mathrm{H} \mathrm{H}_{2} \mathrm{O}=14 \mathrm{~mol}_{2} \mathrm{H}_{4} \times \frac{4 \mathrm{~mol} \mathrm{H}_{2}-\mathrm{O}}{2 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{H}_{4}}=112 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

Use the information below to answer questions 18 and 19.

Ammonium nitrate, $\mathrm{NH}_{4} \mathrm{NO}_{3}$, is an important fertilizer and is also used in the manufacture of explosives and fireworks. It is produced by treating nitric acid, HNO_{3}, with ammonia gas, NH_{3}.

$$
\begin{aligned}
& \mathrm{HNO}_{3}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3} \\
& 1 \mathrm{~mol} 1 \mathrm{~mol} 1 \mathrm{~mol}
\end{aligned}
$$

18. If 14 moles of ammonia gas are used with 16 moles of nitric acid for the reaction, which is the limiting reactant?

Since mol ratio is 1:1:1,
a. $14 \mathrm{~mol} \mathrm{NH}_{3}$ will produce $14 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}$
b. $16 \mathrm{~mol} \mathrm{HNO}_{3}$ will produce $16 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}$

Therefore, NH_{3} is the limiting reactant since it produces smaller amount of product.
19. How many moles of ammonium nitrate would you make from the ingredients in the problem above?

From \#18 above, $14 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}$ would be produced
20. The equation for the reaction between FeCl_{3} and $\mathrm{NH}_{4} \mathrm{OH}$ is:

$$
\mathrm{FeCl}_{3}+\underset{\substack{3 \mathrm{Nol} \\ 3 \mathrm{moH}}}{\mathrm{Fe}(\mathrm{OH})_{3}}+\underset{ }{3 \mathrm{NH}_{4} \mathrm{Cl}}
$$

According to this equation, how many grams of $\mathrm{NH}_{4} \mathrm{Cl}$ would be produced when two moles of $\mathrm{NH}_{4} \mathrm{OH}$ reacts completely?
gram $\mathrm{NH}_{4} \mathrm{Cl}=2 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{OH} \times 160.5 \mathrm{~g} \mathrm{NH}_{4} \underline{\mathrm{Cl}}=107 \mathrm{~g} \mathrm{NH}_{4} \mathrm{Cl}$ $3 \mathrm{~mol}_{-} \mathrm{NH}_{4} \mathrm{OH}$
21. Examine the following balanced reaction:

$$
\begin{aligned}
& 2 \mathrm{AlCl}_{3}+3 \mathrm{MgSO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{MgCl}_{2} \\
& 2 \mathrm{~mol} 3 \mathrm{~mol} \quad 1 \mathrm{~mol}
\end{aligned}
$$

If you have 8 moles of AlCl_{3} and 9 moles of MgSO_{4}, which is your limiting reactant?
From AlCl_{3},
$\mathrm{mol} \mathrm{Al} 2\left(\mathrm{SO}_{4}\right)_{3}=8 \mathrm{~mol} \mathrm{AlCl}_{3} \times 1 \mathrm{~mol} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}=4 \mathrm{~mol} \mathrm{Al} 2\left(\mathrm{SO}_{4}\right)_{3}$
$2 \mathrm{~mol} \mathrm{AlCl}_{3}$

From MgSO_{4},
$\mathrm{Mol} \mathrm{Al} 2\left(\mathrm{SO}_{4}\right)_{3}=9 \mathrm{~mol} \mathrm{MgSO}_{4} \times 1 \mathrm{~mol} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}=3 \mathrm{~mol} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ $3 \mathrm{~mol}_{\mathrm{MgSO}}^{4} 4$
Therefore, MgSO_{4} is limiting reactant since it produced smaller amount of product.

$$
\begin{aligned}
& \mathrm{CaCO}_{3}(\mathrm{~s}) \\
& 1 \mathrm{~mol}
\end{aligned} \underset{\mathrm{CaO}(\mathrm{~s})}{\mathrm{Cmol}}+\underset{\mathrm{CO}}{2} \mathrm{(g)}
$$

22. In the chemical equation above, $3 \mathrm{~mol}^{2} \mathrm{CaCO}_{3}$ will decompose into \qquad .

Since mol ratio is 1:1:1
mol of CaCO_{3} will produce 3 mol CaO and $3 \mathrm{~mol} \mathrm{CO}_{2}$
23. Determine how many moles of CaSi_{2} that would react exactly with 12 moles of SbCl_{3} :

$$
\begin{aligned}
& 3^{3 \mathrm{CaSi}_{2}}+2 \mathrm{SbCl}_{3} \rightarrow 6 \mathrm{Si}+2 \mathrm{Sb}+3 \mathrm{CaCl}_{2} \\
& 3 \mathrm{~mol} 2 \mathrm{~mol}
\end{aligned}
$$

$\mathrm{Mol} \mathrm{CaSi} 2=12 \mathrm{~mol}_{2} \mathrm{SbCl}_{3} \times \underline{3 \mathrm{~mol} \mathrm{CaSi}_{2}}=18 \mathrm{~mol} \mathrm{CaSi}_{2}$

$$
2 \mathrm{~mol}^{-10 C l} 3
$$

24. If you are given 4 moles of O_{2} and 3 moles of N_{2}, which substance will be the limiting reactant?

$$
\begin{array}{cc}
\mathrm{N}_{2}(\mathrm{~g}) & +2 \mathrm{O}_{2}(\mathrm{~g}) \\
1 \mathrm{~mol} & 2 \mathrm{~mol}
\end{array} \underset{2 \mathrm{NO}_{2}(\mathrm{~g})}{2 \mathrm{~mol}}
$$

From O_{2},
$\mathrm{Mol} \mathrm{NO}=4 \mathrm{~mol}_{z} \times \underline{2 \mathrm{~mol} \mathrm{NO}}=4 \mathrm{~mol} \mathrm{NO} 2$
$2 \mathrm{~mol} \mathrm{O}_{\mathrm{z}}$

From N_{2},
$\mathrm{Mol} \mathrm{NO} 2=3 \mathrm{~mol}_{2} \times \underline{2} \mathrm{~mol} \mathrm{NO}_{2}=6 \mathrm{~mol} \mathrm{NO}$
$1 \mathrm{~mol}_{\mathrm{z}}$

O_{2} is the limiting reactant since it produced smaller amount of NO_{2}

25. The empirical formula for a compound is $\mathrm{CH}_{2} \mathrm{O}$, and the molar mass is $180.2 \mathrm{~g} / \mathrm{mol}$. Which is the molecular formula for this compound?
$\left(\mathrm{CH}_{2} \mathrm{O}\right) x=180.2 \mathrm{~g} / \mathrm{mol}$
$30 x=180.2$
$X=\underline{180.2}=6$
30
Therefore, molecular formula $=\left(\mathrm{CH}_{2} \mathrm{O}\right)_{6}=\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
